(In) direct Detection of Boosted Dark Matter

Yanou Cui

University of Maryland

arxiv:1405.7370, K. Agashe, YC, L.Necib and J.Thaler

Introduction

-Conventional Concepts of DM

* Dark Matter: 85% of matter, preponderance of gravitational evidence

Compelling paradigm: DM is composed of massive particles

E.g. Simplest, best studied: One specie of WIMP with Z_2 parity, Ω_{DM} set by thermal freezeout of WIMP annihilation to SM states

- Current-day DM is non-relativistic, $v_{\rm DM,0} \simeq \mathcal{O}(10^{-3})$
- Designs of DM detection experiments

- **★ Indirect detection:** nearly-at-rest annihilation/decay to SM states
- **Direct detection: small nuclear recoil energy** $E_R \sim \frac{\mu^2}{m_N} v_{\mathrm{DM},0}^2$

Introduction: Beyond the "Conventional/Minimal"

* Status of DM detections:

- * No convincing signal (anomalies: PAMELA, AMS-2, GC γ excess...)
- Constraints getting stronger: e.g. LUX, CDMS, FERMI, HESS, LHC...

Conventional/*Minimal* thermal WIMP DM ∈ Nature?

- 1. Yes, just keep looking (e.g. Higgs portal DM...)
- 2. No, give up WIMP miracle DM (e.g. axion, non-thermal DM)
- 3. Yes and No: non-minimal dark sector DM annihilate into dark states (decay to SM, stable --secluded from both direct/indirect searches)

* Philosophical considerations:

- * SM is non-minimal! Two stable matter components e-, p, mass hierarchy
- Non-minimal DM?: Existing explorations of multi-component DM e.g. mirror DM, atomic DM, double-disk DM...

Boosted Dark Matter

- A generic phenomena in non-minimal DM sector...

Novel, generic possibility: A small fraction of DM today is relativistic! from late-time non-thermal processes Boosted DM!

- * Sources of boosted DM: non-minimal components/symmetries...
 - DM conversion: $\psi_i \psi_j \to \psi_k \psi_\ell$; ψ_k , ψ_ℓ lighter (e.g. Belanger, Park, 2011)
 - * Semi-annihilation: $\psi_i \psi_j \to \psi_k \phi$, Z₃ DM symmetry (e.g. D'Eramo, Thaler, 2010)
 - * Self-annihilation: $3 \rightarrow 2$, $4 \rightarrow 2$ (Carlson, Machacek, Hall 1992, Hochberg et.al 2014)
 - Decay transition: $\psi_i \to \psi_j + \phi$ (e.g. inelastic DM)
 - DM Induced nucleon decay: $p + \psi \rightarrow e^+ + \bar{\psi}$ (Davoudiasl et.al 2010, Huang, Zhao, 2014)
- Detection of boosted DM:
 - Impact: reveal novel/non-minimal features of DM sector, in some cases smoking-gun of DM sector (example later...)
 - Challenge: conventional DM detections unsuitable, new strategies needed!

"(In)direct Detection of Boosted DM" (arxiv: 1405.7370) -A Simple Example, Proof of Concept

Outline (for the rest of the talk)

- Example Model (2-component DM)
- * Thermal Relic Abundances, Current-day Annihilation
- * Search Strategies for Boosted DM (Experiments, signal, background)
- * Detection Prospects at Present/Future Experiments (SuperK, PINGU...)
- Constraints on the Model
- Conclusions/Outlook

Basic Idea/Assumptions

Consider two species of DM (need not be fermions): ψ_A , ψ_B , $m_A > m_B$

- * ψ_A : dominant DM component, no direct (*tree-level*) coupling to the SM, thermal relic abundance $\Omega_{\rm DM} \approx \Omega_{\psi_{\rm A}}$ set by thermal annihilation $(\psi_A \overline{\psi}_A \to \psi_B \overline{\psi}_B)$ ("Assisted freezeout", Belanger, Park, 2011)
 - -- The same annihilation process in Galactic halo today, non-relativistic ψ_A , produce relativistic ψ_B , with Lorentz factor (boost) $\gamma = \frac{m_A}{m_B}$
- * ψ_B : sub-dominant DM, small (non-thermal) fraction: boosted DM!
 - ψ_B also isolated from the SM? Then in general $T_{\rm DM} \neq T_{\rm SM}$ at ψ_A freeze-out, $T_{\rm DM}$, $\Omega_{\rm DM}$ sensitive to other details beyond $\sigma_{A\overline{A}\to B\overline{B}}$ (e.g. reheating, early entropy release...)
- ψ_B has appreciable interaction with the SM: maintain key merit of "WIMP paradigm", neat prediction $\sigma_{\rm ann} \to \Omega_{\rm DM}$
 - Offer hope for detecting dark sector: major DM ψ_A can well evade detections...
 - * Direct detection of boosted ψ_B via indirect detection of ψ_A : can be smoking-gun of DM sector! if ψ_B has small thermal abundance, low mass (\lesssim GeV)

A Concrete Model Example

Consider two species of Dirac fermion DM: ψ_A , ψ_B , $m_A > m_B$, stabilized by separate symmetries (e.g. $\mathbb{Z}_2 \times \mathbb{Z}_2$)

- * Contact operator $\mathcal{L}_{\text{int}} = \frac{1}{\Lambda^2} \overline{\psi}_A \psi_B \overline{\psi}_B \psi_A$, ensure s-wave annihilation of ψ_A
- to boosted ψ_B , UV completion

- The only (tree-level) interaction of ψ_A at low E;
- Determine Ω_A , dominant DM
- ψ_B charged under a dark broken U(1)', dark photon γ' kinetic mixing with SM photon:

$$\mathcal{L} \supset -\frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu}$$

 ψ_B can scatter off terrestrial SM targets, via neutral-current-like process $\psi_B X \to \psi_B X^{(\prime)}$

Processes for (in)direct detection of boosted DM, e.g.:

Model parameter space

defined by 6 parameters: $\{m_A, m_B, m_{\gamma'}, \Lambda, g', \epsilon\}$

- Λ : adjusted to yield the desired DM relic abundance of ψ_A
- Cross-section of $\psi_B X \to \psi_B X^{(\prime)}$ scales homogeneously with g' and ϵ
- Dominant phenomenology depends on just mass parameters
- Detectability: sufficient large flux of boosted DM, appreciable scattering rate at detectors,
 - + other constraints (more later...)
- Focus on low mass DM, with $m_A > m_B > m_{\gamma'}$

Benchmark scales: $m_A \simeq \mathcal{O}(10 \text{ GeV}), \quad m_B \simeq \mathcal{O}(100 \text{ MeV}), \quad m_{\gamma'} \simeq \mathcal{O}(10 \text{ MeV}).$

Thermal Relic Abundance, Present-day Annihilation

Annihilation processes (s-wave): $\psi_A \overline{\psi}_A \rightarrow \psi_B \overline{\psi}_B$, $\psi_B \overline{\psi}_B \rightarrow \gamma' \gamma'$

Coupled Boltzmann equations:

$$\frac{dn_A}{dt} + 3Hn_A = -\frac{1}{2} \langle \sigma_{A\bar{A}\to B\bar{B}} v \rangle \left(n_A^2 - \frac{(n_A^{\text{eq}})^2}{(n_B^{\text{eq}})^2} n_B^2 \right),$$

$$\frac{dn_B}{dt} + 3Hn_B = -\frac{1}{2} \langle \sigma_{B\bar{B}\to\gamma'\gamma'} v \rangle \left(n_B^2 - (n_B^{\text{eq}})^2 \right) - \frac{1}{2} \langle \sigma_{B\bar{B}\to A\bar{A}} v \rangle \left(n_B^2 - \frac{(n_B^{\text{eq}})^2}{(n_A^{\text{eq}})^2} n_A^2 \right)$$

 ψ_A and ψ_B effectively decouple when $\langle \sigma_{B\bar{B}\to\gamma'\gamma'}v\rangle \gg \langle \sigma_{A\bar{A}\to B\bar{B}}v\rangle$

- easily satisfied, with assumed spectrum $m_A > m_B > m_{\gamma'}$
 - In this decoupling limit, Ω_A takes the standard form of WIMP DM:

$$\Omega_A \simeq 0.2 \left(\frac{5 \times 10^{-26} \text{ cm}^3/\text{s}}{\langle \sigma_{A\bar{A} \to B\bar{B}} v \rangle} \right) \longrightarrow \langle \sigma_{A\bar{A} \to B\bar{B}} v \rangle \approx 5 \times 10^{-26} \text{ cm}^3/\text{s} \left(\frac{m_A}{20 \text{ GeV}} \right)^2 \left(\frac{250 \text{ GeV}}{\Lambda} \right)^4$$

• Ω_B more subtle! $(\psi_A \overline{\psi}_A \to \psi_B \overline{\psi}_B$ active, impactful on Ω_B , even after ψ_A freezes out (before ψ_B) with nearly constant Y_A well above Y_A^{eq} at late time

"Balanced Freezeout" of ψ_B

In the limit of $\langle \sigma_{B\bar{B}\to\gamma'\gamma'}v\rangle \gg \langle \sigma_{A\bar{A}\to B\bar{B}}v\rangle$, Y_B approaches asymptotic solution when a balance reaches between ψ_B annihilation $(\psi_B \overline{\psi}_B \to \gamma' \gamma')$ and replenishment from $\psi_A \overline{\psi}_A \to \psi_B \overline{\psi}_B$, i.e. $\frac{dY_B}{dx} \to 0$ when :

$$-\langle \sigma_{B\bar{B}\to\gamma'\gamma'}v\rangle \left(Y_B^2 - (Y_B^{\rm eq})^2\right) \simeq +\langle \sigma_{A\bar{A}\to B\bar{B}}v\rangle \left(Y_A^2 - \frac{(Y_A^{\rm eq})^2}{(Y_B^{\rm eq})^2}Y_B^2\right)$$

VS. conventional freezeout criteria:

 $\Gamma \simeq H$

Relic abundance from "Balanced Freezeout": $\frac{\Omega_B}{\Omega_A} \simeq \frac{m_B}{m_A} \sqrt{\frac{\langle \sigma_{A\overline{A} \to B\overline{B}} v \rangle}{\langle \sigma_{B\overline{B} \to \gamma' \gamma'} v \rangle}}$

$$\frac{\Omega_B}{\Omega_A} \simeq \frac{m_B}{m_A} \sqrt{\frac{\langle \sigma_{A\overline{A} \to B\overline{B}} v \rangle}{\langle \sigma_{B\overline{B} \to \gamma' \gamma'} v \rangle}}.$$

- **Novel relation** of $\Omega \propto 1/\sqrt{\sigma}$, very different from usual $\Omega \propto 1/\sigma$
- ◆ Important input for considering constraints on thermal (nonrelativistic) ψ_B :

$$\Omega_B \ll \Omega_A \approx \Omega_{\rm DM} \text{ when } m_B \ll m_A \text{ and/or } \langle \sigma_{B\bar{B} \to \gamma' \gamma'} v \rangle \gg \langle \sigma_{A\bar{A} \to B\bar{B}} v \rangle$$

E.g. at benchmark point: $m_A = 20 \text{ GeV}, \quad m_B = 200 \text{ MeV}, \quad m_{\gamma'} = 20 \text{ MeV}, \quad g' = 0.5, \quad \epsilon = 10^{-3},$

$$\Omega_B \simeq 2.6 \times 10^{-6} \, \Omega_{\rm DM}$$

Detecting Boosted Dark Matter

Flux of boosted ψ_B from GC:

$$\frac{d\Phi_{\rm GC}}{d\Omega dE_B} = \frac{1}{4} \frac{r_{\rm Sun}}{4\pi} \left(\frac{\rho_{\rm local}}{m_A}\right)^2 J \left\langle \sigma_{A\overline{A} \to B\overline{B}} v \right\rangle_{v \to 0} \frac{dN_B}{dE_B}$$

e.g. assuming NFW profile, integrate over 10°cone around GC:

$$\Phi_{GC}^{10^{\circ}} = 1.6 \times 10^{-8} \text{ cm}^{-2} \text{s}^{-1} \left(\frac{\langle \sigma_{A\overline{A} \to B\overline{B}} v \rangle}{5 \times 10^{-26} \text{ cm}^3/\text{s}} \right) \left(\frac{20 \text{ GeV}}{m_A} \right)^2$$

- Rather small flux! ... How to detect it?

Need: large volume, small background detector, sensitive to scattering $\psi_B X \to \psi_B X^{(\prime)}$ (X, X': SM states) with energetic ψ_B

Such experiments already exist!! Neutrino/proton decay

detectors: e.g. SuperK:

IceCube:

and their upgrades/ extensions (HyperK, PINGU, MICA...)!

Detection strategy at neutrino detectors:

Cherenkov light from final state charged particles, must be energetic enough to cross Cherenkov threshold:

Water: $\gamma_{\text{Cherenkov}} = 1.51$, Ice: $\gamma_{\text{Cherenkov}} = 1.55$

Scattering processes of atmospheric neutrinos (background to boosted DM):

+other final states: μ^- , hadronic inelastic

• Detection channels for boosted DM ψ_B : neutral-current type, no μ^- final state

Leading signal: single e^-

Subleading: hadronic channels ($\sigma_{p,\text{tot}} \sim \frac{m_p}{m_e} \sigma_{e^-,\text{tot}}$, but for the model with t-channel light γ' , E_{transfer} typically too small to cross Cherenkov/DIS threshold)

Kinematics, Rate of $\psi_B e^- \rightarrow \psi_B e^-$ Scattering at Detectors

4-momenta of incoming and outgoing particle (lab frame):

Incident
$$\psi_B$$
: $p_1 = (E_B, \vec{p})$, Scattered ψ_B : $p_3 = (E_B', \vec{p}')$, Initial e : $p_2 = (m_e, 0)$, Scattered e : $p_4 = (E_e, \vec{q})$.

- Mono-energetic boosted ψ_B from ψ_A annihilation: $E_B = m_A$
- Maximal energy of scattered e^- by pure kinematics:

$$E_e^{\text{max}} = m_e \frac{(E_B + m_e)^2 + E_B^2 - m_B^2}{(E_B + m_e)^2 - E_B^2 + m_B^2}$$

• Minimum detectable energy of scattered e^- :

 $E_e^{\min} = \max\{E_e^{\text{thresh}}, \gamma_{\text{Cherenkov}} m_e\}$ E_e^{thresh} : analysis threshold at experiment in consideration Viable phase space: $E_e^{\text{max}} \geq E_e^{\text{min}}$

- In terms of boost factors: $\gamma_e^{\text{max}} = 2\gamma_B^2 1$, $\gamma_e^{\text{min}} = \frac{E_e^{\text{min}}}{m_e}$, $\gamma_B = \frac{E_B}{m_B} = \frac{m_A}{m_B}$
- Differential cross-section: peaks at low E_e

$$\frac{d\sigma_{Be^-\to Be^-}}{dt} = \frac{1}{8\pi} \frac{(\epsilon eg')^2}{(t - m_{\gamma'}^2)^2} \frac{8E_B^2 m_e^2 + t(t + 2s)}{\lambda(s, m_e^2, m_B^2)},$$

Integrated (assume $E_e^{\text{thresh}} = 100 \text{ MeV}$):

$$\sigma_{Be^- \to Be^-} = 1.2 \times 10^{-33} \text{ cm}^2 \left(\frac{\epsilon}{10^{-3}}\right)^2 \left(\frac{g'}{0.5}\right)^2 \left(\frac{20 \text{ MeV}}{m_{\gamma'}}\right)^2$$

Background and its Rejection Strategies

- * Major background from atmospheric neutrinos: cosmic ray interacts with the Earth's atmosphere
 - Spectrum peaks $\sim 1 \text{ GeV}$, falls as $E^{-2.7}$ at high E
 - $\nu_e : \nu_\mu \sim 1 : 2 \ (\pi^{\pm} \text{ cascade decay})$
 - Leading background for our signal $\psi_B e^- \to \psi_B e^-$: CC scattering $\nu_e n \to e^- p$, with p undetected

For
$$\mathcal{O}(1 \text{ GeV})$$
 neutrinos, $\sigma_{\rm CC} \approx 0.8 \times 10^{-38} \text{ cm}^2 \left(\frac{E_{\nu}}{\text{GeV}}\right)$

 $\sigma_{\rm CC} < \sigma_{Be^- \to Be^-}$ at benchmark point, but $\nu_{\rm atm}$ has much larger flux than boosted DM...

Discriminants for S vs. B:

- 1. <u>Angular restriction</u>: Boosted DM has a definite direction-the GC, vs. $\nu_{\rm atm}$ is nearly isotropic.
- Impose that detected e^- falls within a cone with half-opening angle θ_C w.r.t. the GC. θ_C determined by optimizing significance

Discriminants for S vs. B (Background rejection algorithm)

- 2. <u>Energy restriction</u>: Boosted DM is mono-energetic ($E_B = m_A$), vs. continuous energy of ν_{atm} spectrum.
- A correlation between E_e and $\cos \theta_e'$: $\cos \theta_e' = \frac{(m_A + m_e)}{\sqrt{m_A^2 m_B^2}} \frac{\sqrt{E_e m_e}}{\sqrt{E_e + m_e}}$
 - Typical resolution of neutrino detectors may not be fine enough to make use of this, low E threshold also needed.
- The above #1, #2: Favor detectors with excellent angular/E resolution + low threshold.
 - 3. <u>Absence of muon excess</u>: Signal process $\psi_B e^- \to \psi_B e^-$ has <u>no</u> correlated muon signature, vs. $\nu_{\rm atm}$ CC process $\nu_e n \to e^- p$ accompanied by $\nu_\mu n \to \mu^- p$.
 - 4. <u>Multi-ring veto</u>: Signal $\psi_B e^- \to \psi_B e^-$ leads to single-ring e^- events <u>only</u>, vs. $\nu_{\rm atm}$ CC process can lead to multi-ring events (e.g. p, π^\pm Cherenkov rings)
- The above #3,#4 can also distinguish boosted DM signal from neutrinos from other BSM models: WIMP DM annihilation in the GC.
 - 5. <u>Solar neutrino/muon veto:</u> solar neutrinos dominate background \lesssim 20 MeV, neutrino bkg from muons decaying within detector: 30-50 MeV
 - Impose a cut $E_e > 100$ MeV in our analysis to avoid complications.

Detection Prospects at Present/Future Experiments

Candidate experiments: Large volume detectors for neutrino/proton decay Summary of representative experiments:

	Experiment	Volume (MTon)	$E_e^{\text{thresh}} \text{ (GeV)}$	$\theta_e^{\rm res}$ (degree)
	Super-K	2.24×10^{-2}	0.01	3°
	Hyper-K	0.56	0.01	3°
	IceCube	10^{3}	100	30°
	PINGU	0.5	1	$23^{\circ}(at \text{ GeV scale})$
(MICA: still speculative)	MICA	5	0.01	$30^{\circ}(at\ 10\ MeV\ scale)$

IceCube (KM3NeT, ANTARES): larger volume, but E_e^{thresh} high, θ_e^{res} large

(In our model typically $E_e \lesssim 1 \text{ GeV}$ due to light t-channel γ' in param region of interest)

- Future low energy extension of IceCube:
 - ★ PINGU: threshold not ideal, but has sensitivity
 - * ? MICA: low enough threshold, and large volume (still speculative)
- Super-K/Hyper-K: smaller volume, but low $E_e^{\rm thresh}$, excellent $\theta_e^{\rm res}$ + Super-K has 10-yr data available!
- Recent proposals based on large-volume Liquid Ar: LAr TPC, GLACIER, ionization based, no Cherenkov threshold limit, hadronic channel possible...

Event Selection

- ❖ Our analysis for sensitivity: *Cut-and-count based*, simple (vs. MVA)
- ***** Impose search cone θ_C to isolate events from GC (reduce bkg by θ_C^2) Optimum θ_C determined by maximizing signal significance ($\approx 10^{\circ}$, later...) Also limited by experimental resolution! $\theta_C = \max\{10^{\circ}, \theta_e^{\text{res}}\}\$
- **Energy selection**: *Ideally*: adjust E range based on E_e^{\max} for given m_A and m_B , push analysis threshold E_e^{\min} as low as possible. \longrightarrow best sensitivity

Our conservative approach: take the standard Super-K events categories, without finer energy binning, easy to use existing data...

Fully-contained single-ring electron events at Super-K:

Sub-GeV: {100 MeV, 1.33 GeV}, Multi-GeV: {1.33 GeV, 100 GeV},

- Use both sub- and multi-GeV categories for Super/Hyper-K and MICA
- PINGU: higher E_e^{thresh} , cannot reconstruct Cherenkov rings, nor separate e-from μ - near threshold \rightarrow Use only multi-GeV+multi-ring, μ - like events

Signal Rates

Imposing θ_C and energy range requirements, number of signal events:

$$N_{\text{signal}}^{\theta_{C}} = \Delta T N_{\text{target}} \left(\Phi_{\text{GC}} \otimes \sigma_{Be^{-} \to Be^{-}} \right) \Big|_{\theta_{C}}$$

$$= \frac{1}{2} \Delta T \frac{10 \, \rho_{\text{Water/Ice}} V_{\text{exp}}}{m_{\text{H}_{2}\text{O}}} \frac{r_{\text{Sun}}}{4\pi} \left(\frac{\rho_{\text{local}}}{m_{A}} \right)^{2} \langle \sigma_{A\overline{A} \to B\overline{B}v} \rangle_{v \to 0}$$

$$\times \int_{0}^{2\pi} \frac{d\phi'_{e}}{2\pi} \int_{\theta'_{\text{min}}}^{\theta'_{\text{max}}} d\theta'_{e} \sin \theta'_{e} \frac{d\sigma_{Be^{-} \to Be^{-}}}{d\cos \theta'_{e}} \int_{0}^{\pi/2} d\theta_{B} \sin \theta_{B} \, 2\pi J(\theta_{B}) \Theta(\theta_{C} - \theta_{e})$$

E.g. Number of signal events per year with $\theta_C = 10^{\circ}$, sub-GeV+multi-GeV:

$$\frac{N_{\text{signal}}^{10^{\circ}}}{\Delta T} = 25.1 \text{ year}^{-1} \left(\frac{\langle \sigma_{A\overline{A} \to B\overline{B}} v \rangle}{5 \times 10^{-26} \text{ cm}^3/\text{s}} \right) \left(\frac{20 \text{ GeV}}{m_A} \right)^2 \left(\frac{\sigma_{Be^- \to Be^-}}{1.2 \times 10^{-33} \text{ cm}^2} \right) \left(\frac{V_{\text{exp}}}{22.4 \times 10^3 \text{ m}^3} \right)$$

Number of signal events in various experiments (m_A-m_B plane):

Background Rates, Signal Significance

Background rates

Atmospheric neutrino background measured by Super-K over 10.7 yrs

Super-K data: fully contained single-ring 0-decay (B) electron events (all sky):

Sub-GeV:
$$\frac{N_{\text{bkgd}}^{\text{all sky}}}{\Delta T} = 726 \text{ year}^{-1} \left(\frac{V_{\text{exp}}}{22.4 \times 10^3 \text{ m}^3} \right)$$

Multi-GeV:
$$\frac{N_{\text{bkgd}}^{\text{all sky}}}{\Delta T} = 197 \text{ year}^{-1} \left(\frac{V_{\text{exp}}}{22.4 \times 10^3 \text{ m}^3} \right)$$

Background events inside the search cone θ_C : $N_{\text{bkgd}}^{\theta_C} = \frac{1 - \cos \theta_C}{2} N_{\text{bkgd}}^{\text{all sky}}$

e.g. For
$$\theta_C = 10^{\circ}$$
 (Super-K):

Sub-GeV:
$$\frac{N_{\text{bkgd}}^{10^{\circ}}}{\Delta T} = 5.5 \text{ year}^{-1}.$$

Multi-GeV:
$$\frac{N_{\text{bkgd}}^{10^{\circ}}}{\Delta T} = 0.35 \text{ year}^{-1}.$$

Signal significance:

$$\mathrm{Sig}^{\theta_C} \equiv \frac{N_{\mathrm{signal}}^{\theta_C}}{\sqrt{N_{\mathrm{bkgd}}^{\theta_C}}}$$

 $\mathrm{Sig}^{ heta_C} \equiv rac{N_{\mathrm{signal}}^{ heta_C}}{\sqrt{N_{\mathrm{bkgd}}^{ heta_C}}} egin{array}{c} \mathrm{Search \ cone \ angle} \\ \mathrm{determined \ by} \\ \mathrm{maximizing \ Sig}^{ heta_C} \end{array}$

Estimated Experimental Reach, Limits

- \clubsuit Impose 2σ exclusion limit using SuperK 10-year all-sky data
- * Analyze 2σ signal reach w/optimal search cone around GC direction, For fair comparison of different experiments: assume same event selection, same exposure time as Super-K, + multi-GeV, μ -like for PINGU

E.g. Signal sensitivity at experiments, Limits from SuperK (m_A-m_B plane):

Light grey lines: modeldependent limits (to explain next...)

Other Existing Constraints-1 (model-dependent)

- Limits on dark photon: dark photon searches $m_{\gamma'} \gtrsim \mathcal{O}(10 \text{ MeV})$ and $\epsilon \lesssim 10^{-3}$ assuming leading decay mode $\gamma' \to e^+e^-$, for $m_{\gamma'} \gtrsim \mathcal{O}(10 \text{ MeV})$ beam-dump experiments $\epsilon \gtrsim 10^{-5}$;
 - Our benchmark: $m_{\gamma'} = 20 \text{ MeV}$ and $\epsilon = 10^{-3}$, allowed, and of interest for muon g-2
- Direct detection of (thermal) non-relativistic major DM ψ_A : ψ_A can scatter off nuclei via ψ_B loop, so subject to conventional DM direct detection at e.g. XENON, LUX, CDMS. Enough suppression from higher-dim operator $\psi_A \overline{\psi}_A \psi_B \overline{\psi}_B$ + loop factor; inelastic splitting may further help
- Direct detection of (thermal) non-relativistic ψ_B : large ψ_B -nucleon scattering cross section $\sigma_{Bp\to Bp} = 4.9 \times 10^{-31} \text{ cm}^2 \left(\frac{\epsilon}{10^{-3}}\right)^2 \left(\frac{g'}{0.5}\right)^2 \left(\frac{20 \text{ MeV}}{m_{\gamma'}}\right)^4 \left(\frac{m_B}{200 \text{ MeV}}\right)^2$ scaled down by small abundance $\sigma_{Bp\to Bp} = \frac{\Omega_B}{\Omega_{\rm DM}} \sigma_{Bp\to Bp}$
 - O(GeV): best constraints from CDMSLite, Damic; stringent, inelastic DM helps
 - **Sub-GeV**: <u>our most favored region for signal</u>, can only be constrained by scattering off electrons, only existing limit: XENON10 (2006 with few electron trigger) (*Essig et.al*, 2012) Constraints are weak (*subsumed by CMB heating limit*...)

Other Existing Constraints-2 (model-dependent)

• Indirect detection of (thermal) non-relativistic ψ_B :

the annihilation $\psi_B \overline{\psi}_B \to \gamma' \gamma' + \text{subsequent decay } \gamma' \to e^+ e^- \text{lead to potential}$ indirect detection signal (positron, γ -ray). Constraints from AMS-02, Fermi etc. rather weak: small abundance/rate, large bkg uncertainties/analysis cut for sub-GeV, O(GeV) energies. (CMB limit stronger...)

• *CMB constraints on thermal* ψ_B *annihilation:* with $m_B \lesssim \mathcal{O}(1 \text{ GeV})$, ψ_B annihilation in the early universe is subject to constraints from CMB heating (Madhavacheril et.al 2012). Bound is imposed on the injection power:

$$p_{\mathrm{ann},\psi_{\mathrm{B}}} = f_{\mathrm{eff}} \frac{\langle \sigma_{B\overline{B} o \gamma' \gamma'} v \rangle}{m_B} \left(\frac{\Omega_B}{\Omega_{\mathrm{DM}}} \right)^2 \simeq f_{\mathrm{eff}} \langle \sigma_{A\overline{A} o B\overline{B}} \rangle \frac{m_B}{m_A^2}$$
 suppressed by m_B^2/m_A^2 relative to the bound for major DM

Sommerfeld enhancement due to light γ' also included (not significant)

- Favors large m_A/m_B ratio, consistent with optimizing boosted DM signal
 - *BBN Constraints on thermal* ψ_B annihilation: only hadronic final states (n, p, π) lead to constraints comparable/stronger bound than CMB, but not possible for $m_{\gamma'}$ of $\mathcal{O}(10 \text{ MeV})$
 - *DM search at colliders*: weak, since ψ_B interacts w/SM by light mediator

Conclusions, Outlook

We presented a novel DM scenario:

- ✓ Thermal WIMP paradigm, ✓ Evade conventional DM detection bounds
- + Boosted DM signal, detectable at large volume neutrino/proton decay experiments (example: a two-component DM model)
- **❖ Boosted DM**: generic in DM scenarios beyond the single WIMP paradigm (non-minimal components/symmetry, and more...)
 Other example: semi-annihilating DM, 3→2 self-annihilating SIMP...
- **Variation based on the example model**: if both ψ_A and ψ_B are charged under U(1)', and $m_A > m_{\gamma'} > m_B$, boosted DM from $\psi_A \overline{\psi}_A \to \gamma' \gamma'$ then $\gamma' \to \psi_B \overline{\psi}_B$; interesting possibility: fraction decay $\gamma' \to \text{SMSM}$, explain GC γ -ray excess...

Other Possible Signatures/Phenomenology

- Detecting hadronic final states with: proton tracks, ionization (liquid Ar)
- ψ_A has non-negligible solar-capture rate \longrightarrow boosted DM from the sun
- If ψ_B (interacts via light γ') is a sizable fraction of DM (asymmetric DM) (partially) self-interacting DM (cusp-core, too-big-to-fail?...)

I have friends!

New Phenomenology,
New Search strategies
needed
Boosted DM an example!

